METRICS
from sklearn import metrics
C="Cat"
F="Fish"
H="Hen"
y_true = [C,C,C,C,C,C, F,F,F,F,F,F,F,F,F,F, H,H,H,H,H,H,H,H,H]
y_pred = [C,C,C,C,H,F, C,C,C,C,C,C,H,H,F,F, C,C,C,H,H,H,H,H,H]
print(metrics.confusion_matrix(y_true, y_pred))
[[4 1 1]
[6 2 2]
[3 0 6]]
print(metrics.classification_report(y_true, y_pred, digits=3))
precision recall f1-score support
Cat 0.308 0.667 0.421 6
Fish 0.667 0.200 0.308 10
Hen 0.667 0.667 0.667 9
accuracy 0.480 25
macro avg 0.547 0.511 0.465 25
weighted avg 0.581 0.480 0.464 25